多智能体增强学习(Marl)最近引起了很多研究。然而,与其单一代理对应物不同,Marl的许多理论和算法方面尚未得到很好的理解。在本文中,我们使用演员 - 评论家(AC)算法研究了自主代理的协调行为的出现。具体而言,我们提出并分析了一类协调的演员 - 批评算法(CAC),其中单独的参数化政策有一个{\ IT共享}部分(其中在所有代理中共同优化)和{\ IT个性化}部分(这是只有当地优化)。这种类型的{\它部分个性化}策略允许代理通过利用同伴的过去的经验来学习协调并适应各个任务。我们设计的灵活性允许提出的Marl-CAC算法用于{\ IT完全分散}设置中使用,其中代理商只能与其邻居通信,以及偶尔代理的{\ IT联合}设置与服务器通信,同时优化其(部分个性化)本地模型。从理论上讲,在一些标准规律性假设下,所提出的Marl-CAC算法需要$ \ mathcal {o}(\ epsilon ^ { - \ frac {5} {2}})$样本来实现$ \ epsilon $ - 固定式解决方案(定义为目标函数梯度的平方标准的解决方案小于$ \ epsilon $)。据我们所知,这项工作为具有部分个性化策略的分散式交流算法提供了第一个有限的样本保证。
translated by 谷歌翻译
在许多实际设置中,控制决策必须在有关相关状态变量的演变的部分/不完全信息下进行。部分观察到的马尔可夫决策过程(POMDPS)是一种相对良好的建模和分析这些问题的框架。在本文中,我们考虑了基于该过程可观察历史的POMDP模型的结构估计。我们用随机奖励分析POMDP模型的结构特性,并指定识别模型的条件,而不知道状态动态。我们考虑一种软策梯度算法来计算最大似然估计器,并提供收敛到静止点的有限时间表征。我们用应用于最佳设备更换的应用说明了估计方法。在这方面,必须在真实状态的部分/不完全信息下进行更换决策(即设备的条件)。我们使用合成和实数据来突出所提出的方法的鲁棒性,并在忽略部分状态可观察性时,表征误操作的可能性。
translated by 谷歌翻译
The estimation of the generalization error of classifiers often relies on a validation set. Such a set is hardly available in few-shot learning scenarios, a highly disregarded shortcoming in the field. In these scenarios, it is common to rely on features extracted from pre-trained neural networks combined with distance-based classifiers such as nearest class mean. In this work, we introduce a Gaussian model of the feature distribution. By estimating the parameters of this model, we are able to predict the generalization error on new classification tasks with few samples. We observe that accurate distance estimates between class-conditional densities are the key to accurate estimates of the generalization performance. Therefore, we propose an unbiased estimator for these distances and integrate it in our numerical analysis. We show that our approach outperforms alternatives such as the leave-one-out cross-validation strategy in few-shot settings.
translated by 谷歌翻译
Humans form mental images of 3D scenes to support counterfactual imagination, planning, and motor control. Our abilities to predict the appearance and affordance of the scene from previously unobserved viewpoints aid us in performing manipulation tasks (e.g., 6-DoF kitting) with a level of ease that is currently out of reach for existing robot learning frameworks. In this work, we aim to build artificial systems that can analogously plan actions on top of imagined images. To this end, we introduce Mental Imagery for Robotic Affordances (MIRA), an action reasoning framework that optimizes actions with novel-view synthesis and affordance prediction in the loop. Given a set of 2D RGB images, MIRA builds a consistent 3D scene representation, through which we synthesize novel orthographic views amenable to pixel-wise affordances prediction for action optimization. We illustrate how this optimization process enables us to generalize to unseen out-of-plane rotations for 6-DoF robotic manipulation tasks given a limited number of demonstrations, paving the way toward machines that autonomously learn to understand the world around them for planning actions.
translated by 谷歌翻译
Assessing the critical view of safety in laparoscopic cholecystectomy requires accurate identification and localization of key anatomical structures, reasoning about their geometric relationships to one another, and determining the quality of their exposure. In this work, we propose to capture each of these aspects by modeling the surgical scene with a disentangled latent scene graph representation, which we can then process using a graph neural network. Unlike previous approaches using graph representations, we explicitly encode in our graphs semantic information such as object locations and shapes, class probabilities and visual features. We also incorporate an auxiliary image reconstruction objective to help train the latent graph representations. We demonstrate the value of these components through comprehensive ablation studies and achieve state-of-the-art results for critical view of safety prediction across multiple experimental settings.
translated by 谷歌翻译
Nowadays, the applications of hydraulic systems are present in a wide variety of devices in both industrial and everyday environments. The implementation and usage of hydraulic systems have been well documented; however, today, this still faces a challenge, the integration of tools that allow more accurate information about the functioning and operation of these systems for proactive decision-making. In industrial applications, many sensors and methods exist to measure and determine the status of process variables (e.g., flow, pressure, force). Nevertheless, little has been done to have systems that can provide users with device-health information related to hydraulic devices integrated into the machinery. Implementing artificial intelligence (AI) technologies and machine learning (ML) models in hydraulic system components has been identified as a solution to the challenge many industries currently face: optimizing processes and carrying them out more safely and efficiently. This paper presents a solution for the characterization and estimation of anomalies in one of the most versatile and used devices in hydraulic systems, cylinders. AI and ML models were implemented to determine the current operating status of these hydraulic components and whether they are working correctly or if a failure mode or abnormal condition is present.
translated by 谷歌翻译
The aim of this work is to introduce MaRF, a novel framework able to synthesize the Martian environment using several collections of images from rover cameras. The idea is to generate a 3D scene of Mars' surface to address key challenges in planetary surface exploration such as: planetary geology, simulated navigation and shape analysis. Although there exist different methods to enable a 3D reconstruction of Mars' surface, they rely on classical computer graphics techniques that incur high amounts of computational resources during the reconstruction process, and have limitations with generalizing reconstructions to unseen scenes and adapting to new images coming from rover cameras. The proposed framework solves the aforementioned limitations by exploiting Neural Radiance Fields (NeRFs), a method that synthesize complex scenes by optimizing a continuous volumetric scene function using a sparse set of images. To speed up the learning process, we replaced the sparse set of rover images with their neural graphics primitives (NGPs), a set of vectors of fixed length that are learned to preserve the information of the original images in a significantly smaller size. In the experimental section, we demonstrate the environments created from actual Mars datasets captured by Curiosity rover, Perseverance rover and Ingenuity helicopter, all of which are available on the Planetary Data System (PDS).
translated by 谷歌翻译
This paper describes the ESPnet Unsupervised ASR Open-source Toolkit (EURO), an end-to-end open-source toolkit for unsupervised automatic speech recognition (UASR). EURO adopts the state-of-the-art UASR learning method introduced by the Wav2vec-U, originally implemented at FAIRSEQ, which leverages self-supervised speech representations and adversarial training. In addition to wav2vec2, EURO extends the functionality and promotes reproducibility for UASR tasks by integrating S3PRL and k2, resulting in flexible frontends from 27 self-supervised models and various graph-based decoding strategies. EURO is implemented in ESPnet and follows its unified pipeline to provide UASR recipes with a complete setup. This improves the pipeline's efficiency and allows EURO to be easily applied to existing datasets in ESPnet. Extensive experiments on three mainstream self-supervised models demonstrate the toolkit's effectiveness and achieve state-of-the-art UASR performance on TIMIT and LibriSpeech datasets. EURO will be publicly available at https://github.com/espnet/espnet, aiming to promote this exciting and emerging research area based on UASR through open-source activity.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Spoken language understanding (SLU) is a task aiming to extract high-level semantics from spoken utterances. Previous works have investigated the use of speech self-supervised models and textual pre-trained models, which have shown reasonable improvements to various SLU tasks. However, because of the mismatched modalities between speech signals and text tokens, previous methods usually need complex designs of the frameworks. This work proposes a simple yet efficient unsupervised paradigm that connects speech and textual pre-trained models, resulting in an unsupervised speech-to-semantic pre-trained model for various tasks in SLU. To be specific, we propose to use unsupervised automatic speech recognition (ASR) as a connector that bridges different modalities used in speech and textual pre-trained models. Our experiments show that unsupervised ASR itself can improve the representations from speech self-supervised models. More importantly, it is shown as an efficient connector between speech and textual pre-trained models, improving the performances of five different SLU tasks. Notably, on spoken question answering, we reach the state-of-the-art result over the challenging NMSQA benchmark.
translated by 谷歌翻译